
The SDS Document
A Conceptual Basis Towards Understanding the

Self-Describing Data Standard
Ê Ê Ê

Ericka Lutz and Chris Saltmarsh
December 1, 1991

TABLE OF CONTENTS
THIS IS SDS
THIS IS A TEACHING DOCUMENT
WHAT SDS DOES
EXPERIMENTAL SYSTEMS AND DATA FLOW

Dealing with Data Flow Management
Integrated Systems - Ideal If They Could Be Universal
Interpreted and Compiled Languages
The SDS Approach

WHY SDS?
Data Transfer / Memory Allocation / Data Structure

MEMORY ALLOCATION IN COMPILED LANGUAGES - C
Automatic Allocation
Run-Time Allocation
Common Memory Allocation Errors in C
A Note About Memory Allocation in FORTRAN
Lost Information and Overwrites in Compiled Languages

MEMORY ALLOCATION IN INTERPRETED LANGUAGES
Demonstration of a Crude Search Mechanism

SDS’ MEMORY ALLOCATION TECHNIQUES/SYSTEMS
DATA TRANSFER BETWEEN PROCESSORS - LIFE BEFORE SDS

Data Structures
Varying Data Structure Storages in Compiled Languages
Dealing with Data Transfer - External Data Representation

THE SDS APPROACH TO DATA TRANSFER
TRANSFER WITHIN A SYSTEM
ALLOCATION WITHIN PROCESS AND SHARED MEMORY

Sharing Data Originating in Process Memory
Shared Memory
How Shared Memory Functions

SDS AND SHARED MEMORY
DATA DESCRIPTION
LISTS AND ARRAYS
LISTS IN THE C++ IMPLEMENTATION - THE SDSLISTK

Persistent SDSListks
HIGHER ORDER NAMING CONVENTIONS
SDS COMMUNICATION - COMMUNISTKS AND GLISH

The Focus of a Communistk
Communistk Constraints
Change of Focus
GLISH
ISTK Information and Documentation
Suggested Reading and References

The SDS Document - 1 - SDS Release 1.0

THIS IS SDS
SDS, the Self-Describing Data Standard, is a component of the Integrated Scientific Tool Kit (ISTK), a
computer software tool and component kit developed for use in large experimental control systems. The
SDS component of ISTK facilitates data flow: the movement of data between computers and between
applications.

SDS’ strength (like that of all the ISTK components) is in its ability to fill the gaps between other available
software. SDS has been created to provide a common link between data management techniques in an
experimental situation where it is effectively impossible to replace the myriad of processors and languages
with a single system.

THIS IS A TEACHING DOCUMENT
To understand why SDS has been developed and how it operates so that it can be used effectively, it is
necessary to understand the overall concepts of data management on a deeper level. This document has
been prepared for that purpose. This text has not been designed to be used in a computer science course; it
is a simplified and generalized explanation that provides the conceptual framework within which SDS can
be understood.

SDS is a system that can be used at various levels for progressively more complex tasks. For simple data
description and transfer, SDS can be used without much explanation. However, for more complex
processes, a stronger background is useful. To understand what SDS can and cannot do, any users or
potential users should read this document before using SDS. (For very experienced programmers, much
of the material in this document will be review and can be skipped at your discretion).

In this document, we discuss how SDS has been developed in response to the experimenter’s problems
and to problems in existing techniques, and we review some of the fundamentals of low-level computer
function; memory allocation and data structuring in complete computer environments, within the compiled
languages of FORTRAN, C, and C++, and within the interpreted language of Basic.

We also review higher-order naming functions and memory allocation in process and shared memory,
SDS general organizational structure objects (SDSListks), persistent objects, and object-oriented
programming (with a discussion of two ISTK components: Communistks and GLISH).

WHAT SDS DOES
In fundamental terms, SDS is a description of the structure (byte ordering, name, floating point coding,
etc.) of a selected quantity of data (a dataset). SDS binds a descriptive information header to data; this layer
of information about the data helps facilitate data manipulation and data transfer between processors of
diverse architecture and between various applications within a computer. SDS does not control or
determine data formats; the person generating the data determines the appropriate format.

By using the SDS description, every application in the system, whatever its “world view”1, has the ability
to utilize the same data. For applications designed to analyze general forms of data in general ways
(displays, Fourier transforms, etc.), SDS aids by providing a full description of the data to be analyzed,
and for applications designed to analyze specific types of data in specific ways, SDS aids by filtering out
inappropriate data.

1Every computer language has its own “world view” towards viewing data and there are
often dramatic differences between the world views of different programming languages.
This “world view” is often one of the reasons to choose to work with a particular language.

The SDS Document - 2 - SDS Release 1.0

EXPERIMENTAL SYSTEMS AND DATA FLOW
There have been a number of commercial (often business-oriented) systems designed to address the
problems that SDS addresses: how to manage the flow of data within and between computers. These
commercial systems are not always appropriate for experimenters working with large experimental control
systems; their emphasis is geared to the commercial world which has different data management
requirements. Many commercial systems too closely couple the data structuring problems with the
applications.

During the operations of complex, experimental equipment, vast quantities of raw data are collected by
numerous widely-distributed computers and instruments. These megabytes of incoming data must be
clearly understood as well as be accessible for short and long term analysis. Keeping track of this data is
one of the experimental programmer’s biggest concerns, especially because it is difficult to predict exact
technical specifications or to predict what problems will arise that will require data restructuring.

Because it is difficult to ascertain which data are pertinent before some analysis has occurred, much of the
incoming data must be stored until the preliminary processing is complete.2 It cannot be pre-determined
who will need access to particular pieces of data or what type of computer and applications they will use
for analysis.

Whatever is in charge of managing these quantities of incoming data must clearly understand what
information has been gathered, must identify its origins, and must be able to transfer that information from
processor to processor for analysis.

Dealing with Data Flow Management
There are several existing ways to approach the problems of data flow management. In an experimental
situation, people have generally used existing interpreted or compiled computer languages, changing
existing tools to fit the job rather than custom creating tools for the situation. This isn’t always effective; it
is always better to have the “right tool for the job” than to make do with tools designed for other purposes.
More recently, complete environment and object-oriented languages have been used. These integrated
systems, while very effective in certain circumstances, are also not necessarily appropriate for the
experimenter.

Integrated Systems - Ideal If They Could Be Universal
For keeping control of data moving from process to process and across processors, a single system seems
desirable.3

“The advantage is constancy, which shows up throughout
the system. The whole integrated system is organized by
a single principal, so a user need understand only this
principal to explore any part of Smalltalk-80.”4

In complete computer environments, the communication system works well, programming is easy, the
debugging tools are effective, task-appropriate tools can be built and a graphic interface is included.5

2 It is sometimes not possible to store all the incoming data.
3One example of a good single system is Smalltalk-80, which provides both a complete
environment and an object-oriented language.
4Cox, Brad J. and Andrew Novobiliski. Object-Oriented Programming : an evolutionary
approach , 2nd Ed., Reading, Mass.: Addison-Wesley, 1991, pg. 33
5 Integrated systems typically don’t easily lend themselves to sequencing but even that can
be done.

The SDS Document - 3 - SDS Release 1.0

If using a single system to facilitate data flow were feasible, SDS (and all the other Integrated Scientific
Tool Kit components) would not be needed, as an integrated system provides a more coherent interface
(and easier memory allocation, data structuring, data transfer) than the general purpose interpreted and
compiled languages can provide.

However, integrated systems have their drawbacks. They are not yet efficient, perhaps too user-friendly
(people can use them without a strong conceptual background) and costly. The reality is that people will
continue to use other languages in various manufacturer’s computers, all of which have slightly different
ways of doing things, and will continue to need to share data generated in various languages and systems
with each other. While the number of languages and processors used can be limited, it is not realistic to
imagine that everything can be standardized.6

Unfortunately, using a single integrated system is not an option at this time. Given that processors of
different types and languages of different types will continue to be used, the Smalltalk-80 type of complete
environment can be effectively eliminated for overall control; it can only be used as a component.

Interpreted and Compiled Languages
Broadly speaking, there are two kinds of computer languages: interpreted languages and compiled
languages. We will be concentrating on BASIC (interpreted) and C (compiled).
(NOTE: For the purposes of this demonstration we use an extreme approach. In reality, the differences
between various compiled and interpreted languages are less stark; as with most things, they exist in
shades of gray.)

6 It is good to remember the ADA story. When the Department of Defense determined that
4 2 0 programming languages were being used in their facilities, they decided to develop
ADA as a universal system that could handle every possible application. The result: the
Department of Defense has 421 languages to contend with.

The SDS Document - 4 - SDS Release 1.0

Interpreted and compiled languages translate into machine code in different ways:

Interpreters Compilers
Time 1 Time 1
Read a line Read entire file
Check for errors Convert to machine language
Convert to machine language Optimize
Execute line Try to execute compiled program

Check for errors
Time 2 Time 2
Read a line Execute compiled program
Check for errors
Convert to machine language
Execute line

Differences Between Compilers and Interpreters: Interpreters convert each program line to machine language each
time the program runs. Compilers convert to machine language only once and then on subsequent times run the
already converted commands.7

In a world of infinitely fast computers, interpreted languages alone might be sufficient for experimenters
and SDS (or compiled languages and integrated computer environments) might not be necessary. An
interpreted language provides quick feedback (informing the programmer of errors): all the data in its
memory are named, easy to locate and easy to edit; everything can be saved; and prototype building and
creation of other small programs is quick and effective.

At this point in time though, interpreted languages tend not to be fast enough for the experimenter’s needs.
In an interpreted language, data are searched sequentially and systematically every time the program is run.
There are ways to speed up an interpreted language’s performance and give it more efficient search
methods8 but, whether an interpreted language is used in its most basic form or uses accelerated search
methods, information about the data is embedded into the data themselves. This embedded information
becomes a problem when the data are transferred between processors and from interpreted languages to
compiled languages.9 To transfer data created by an interpreted language into a compiled language
program requires moving the data through the separate processes of reformatting it, changing it, and
filtering it. Typically, the data must be copied. These extra steps all slow the data transfer process.

Compiled languages are generally faster than interpreted languages because the compilation process has a
better opportunity (the optimization process) to promote efficiency. This same advantage can also be a
disadvantage: in order to make any alterations, however small, in a compiled language program, elements
of the program must be re-compiled and linked. Another serious drawback with compiled languages is that
information about the data (meta-data) is lost after compilation and it becomes difficult to reference what is
contained in a block of data without searching through the code. Compiled languages, however, provide
more data-structuring flexibility than interpreted languages do and, in an experimental situation where data-
structuring flexibility and speed are vital, an interpreted language is at a disadvantage to the more
sophisticated compiled languages.

7Adapted with changes from: Wilson, Stephen. Using Computers to Create Art. Englewood
Cliffs, N.J.: Prentice-Hall, 1986 pg. 161
8Programs can be speeded up by a number of methods but interpreted languages are
intrinsically slow.
9Compiled languages make assumptions that there is no embedded description of the data in
the code.

The SDS Document - 5 - SDS Release 1.0

The SDS Approach
SDS assumes that, optimally, an entire operation will be automatically run by computers and, in designing
SDS, a decision was made to build a structure optimized for the systems with the highest rates of
performance rather than building a system optimized for the slowest systems (people). In SDS, data
remains in two parts: the basic data objects, and the data structure description. This two part division
assures that if data searching is needed it can be done as efficiently as by any interpreted language, and at
times if and when data searching is not needed, data access is optimized for use by compiled languages.
Because SDS stores data in a format appropriate for high-speed manipulation, the system would be useless
without interface tools for the interaction between people and data. To this end, editors and viewers have
been developed and are provided with the SDS package.

WHY SDS?
SDS has not been designed to replace integrated database management systems. SDS combines data
management techniques of interpreted and compiled languages and provides management control when
data are being manipulated outside the database management system. The comparison between compiled
languages and interpreted languages was not meant to argue the benefit of using of one system over
another but, rather, to point out that neither system is perfect.

Data Transfer / Memory Allocation / Data Structure
Transferring data between applications and between processors can present problems, especially for
people in the experimental world who need a great deal of flexibility. Many of these problems are based
on differences in data structuring and memory allocation in different systems. Because computers store
their data in varying formats, data transferred between systems often can’t be read without a time-
consuming translation process. Often, the “world views” (the idiom that a language uses to describe data)
are not compatible and the languages have different approaches to looking at data (making problematic, for
instance, the transfer of complex data structures generated in a compiled language to a system using an
interpreted language).

SDS facilitates the data transfer between processors of different architecture. Perhaps a good way to think
of SDS is as “glue”, a substance that binds these components (systems, languages, applications) together
at the level of bits and bytes, the level of memory allocation and data structuring. To understand how SDS
binds these components, we need to look at the differences in data transfer and data structuring techniques
in different systems/languages. We also need to look at memory allocation techniques in compiled and
interpreted languages to clarify how SDS operates.

MEMORY ALLOCATION IN COMPILED LANGUAGES - C
In an experimental situation where it is impossible to determine how much memory is needed until objects
have been created, it is difficult to pre-allocate memory. In the higher level compiled languages, memory
allocation is formalized to allow the existence of dynamic objects of complex different data structures
whose memory allocation is determined at run-time.

The SDS Document - 6 - SDS Release 1.0

The following example is a demonstration of both automatic and run-time allocation in C language.

Sample Fragment of C code1 0

int a;
int *b;
a = 3
b=(int *)malloc (size of (int));
*b = 4
printf (“%d\n”,a);

Automatic Allocation
In the sample code above, when the compiler reads the command, int a;, the compiler allocates four bytes
of memory in the stack11 as the integer a.12 The compiler keeps a pointer that instructs the computer:
should there be a reference in the program to a, point to this area of memory.

The command a=3 writes the number 3 into the area of memory (the four bytes) that has been allocated in
the stack.

The command printf(“%d\n”,a); does, indeed, refer back to a. It tells the computer to print out the
integer a. When the computer receives this command, the computer then goes to the determined place in
memory (those four bytes in the stack), finds the value of a (which we have already determined to be 3),
and prints it.

Run-Time Allocation
Something different happens when the compiler reads the command int*b;. Because * means address,
the compiler understands that b is not an integer itself, it is a pointer to an integer. Since a pointer takes up
four bytes of space just as an integer does, the compiler allocates four bytes of space in the stack. This
pointer now points at some undetermined place in memory.

The command b=(int *)malloc (size of (int)); allocates memory for int b at run-time (as opposed to
automatic allocation at compile time as is done with a). When the program actually runs, the computer will
allocate enough space for an integer. The computer finds another four bytes, in a completely different part
of computer memory (not on the stack), and determines it as the area of memory that int*b points to. The
address of the new, allocated space is now written into the pointer int*b. Once the memory is allocated,
*b=4 writes the value of 4 into the new, allocated space.

In our example, using run-time allocation seems silly because it would be very easy to simply allocate
space for the integer b. Imagine, however, an experimental situation where a piece of hardware is emitting
numbers and measurements. Because the size and even the type of the numbers may be unclear until run-
time, having the flexibility of being allowed to allocate the memory space as needed is a decided
advantage.

1 0 A final line in this code, much much later, would be: free (b); which frees the memory
allocated for b and puts it back for future use.
1 1Stack - according to legend, this data structure was inspired by spring-loaded stacks of
cafeteria trays. A stack is a buffer - things are pressed down into the stack and they only
come out of it in the reverse order they were in pressed in - last in = first out. Program
stacks are used at run-time. When a program is run, addresses, variables, all the things that
a program needs to know about are inserted into the stack.
1 2An integer takes up four bytes of space in most computers.

The SDS Document - 7 - SDS Release 1.0

Common Memory Allocation Errors in C
A common mistake in the example above is to forget that space must be allocated before it is used, to use
the pointer without saying what it is going to point to, and to accidentally write the value (in this case, 4),
rather than the address of the value, into the pointer itself.

In the more sophisticated compiled languages, the programmer is allowed to allocate memory as needed,
but must take responsibility herself for memory allocation. There are several steps involved but the basic
principal remains the same: space must be allocated before it is used and still be allocated when it is used.

The SDS Document - 8 - SDS Release 1.0

The chart below describes a common allocation error.

WRONG Example of Allocation in C

char*; It is a char*.
getname() ; It is a function called getname.
{ Start body of code.
char name [20]; Find space for 20 characters.
strcpy (name,“hello”); Copy into that space the literal string “hello”.
return name; Return with the pointer to that piece of space.
} End code.

Unfortunately, this code MIGHT work (for a while). However, it is illegal. Why? It is not enough to
simply name the object and set memory aside for it in the stack.

When the compiler reads the sample code char name [20];, it knows that the programmer has requested
some memory. It allocates it in the stack.

At the command strcpy (name,“hello”);, the computer writes “hello” onto that piece of memory. This
memory is not reserved after the function returns. The code will only work until the compiler happens to
use the memory for something else (as it is completely allowed to do). At that point, the memory will be
overwritten, causing later problems.

The command printf(“%s”,name);, if given within the function, will print out the name: “hello” will
appear. The scope of the object, however, exists only within the function it has been written in and if this
command is referred to within another function, the computer will perform the command but important
information inside that piece of memory may have been overwritten (and printing that data may be fatal to
the program13).

1 3 For example: in C, a character string is terminated with a 0. Printing the string searches
for that 0. If it has been overwritten, the computer will continue to print and may cause a
fatal error.

The SDS Document - 9 - SDS Release 1.0

The chart below describes a correct example of a memory allocation code fragment.

RIGHT Example of Allocation in C

char*; It is a char*.
getname() ; It is a function called getname.
{ Start body of code.
char*name; I need a temporary character pointer.
if(name=(char*)malloc(20))==NULL) exit(0); “If” statement to trap malloc.
strcpy (name,“hello”); Copy the literal string “hello into it.
return name; Return a pointer to the explicit piece of memory

where the name is.
} End code.

A Note About Memory Allocation in FORTRAN
In FORTRAN, a base-level compiled language, the programmer cannot allocate memory at run-time. To
use FORTRAN, the programmer must allocate as much memory as she thinks will be needed. FORTRAN
reads only as much data as memory has been allocated and no more, so usually, the maximum amount of
memory is requested. This has some disadvantages: every program tends to become huge, and sometimes
the programmer runs out of memory.

Lost Information and Overwrites in Compiled Languages14

In compiled languages, structuring information about the data (meta-data) is often stripped to make the
program tighter after the compilation process. The result is that it is difficult to reference what is contained
in the block of data without searching through the code.15

1 4 In interpreted languages, while all the data structuring information is available at run
time, an unfortunate reality is that it remains either inaccessible or specific to the
interpreter that created the data. In actuality, programmers using interpreters must write
data structure information in two or more places.
15 In FORTRAN, for instance, only a small portion of data structuring information remains
after compilation. C retains slightly more information.

The SDS Document - 1 0 - SDS Release 1.0

Referring back to our sample fragment of C code:

Sample Fragment of C code

int a;
int *b;
a = 3
b=(int *)malloc (size of (int));
*b = 4
printf (“%d\n”,a);

Once this sample code is compiled and the program is run, the meta-data about 3 (that the programmer
named it a and that it is an integer) is never used; though it remains around (but not in!) the code unless it
is stripped out, it is only used for debugging.16 Once the original information about the data structure is
stripped away it is gone forever, leaving only a machine code pointer pointing to a memory location.

Stripping the code of meta-data can lead to data overwrites: in some compiled languages, pointer space
allocated for an integer can be used to store other data structures. For instance, if the programmer
specifies space for a floating point number but then writes in a double, the compiled language will do it but
will overwrite her memory. This is less of a problem in interpreted languages.

MEMORY ALLOCATION IN INTERPRETED LANGUAGES
Interpreted languages work differently than compiled languages. In an interpreted language, all memory
allocation is done at run-time and is automatic. Code is searched through sequentially every time the
program is run. As it searches, the interpreted language checks to see if a data object that is referred to
exists in memory. If the data object is nonexistent, the interpreted language will allocate memory for it.17

Sample Fragment of BASIC code

Let A=0.23
Let I=1,047,233,823
print A,I

1 6 If something goes wrong, the debugger will use the symbols to help find the problem.
17The fact that code is syntactically correct doesn’t mean that it is going to work. Because
allocation in an interpreter is all done at run time, within a program there might be a sub-
routine which very seldom gets attached. The program may hit the sub-routine and
suddenly find that it is out of memory.

The SDS Document - 1 1 - SDS Release 1.0

Demonstration of a Crude Search Mechanism
When the interpreter reaches the command, print A,I, it begins to search for A from the top of the data
heap. Recognizing the first item as a float, specifically, the float A, it moves down to the next line to find
its value, and prints out 1.792.

After having found and printed A, the interpreter returns to the top of the data heap to search for I. The
first thing it finds is the float A. As that is not the integer I, the interpreter continues to the beginning of
the next item, skipping the rest of the description of A. It it able to do this because it knows that a float
plus its description needs a particular number of storage spaces in memory. It now jumps down that many
spaces and checks the next object. In this case, the second item is, indeed, the integer I. The interpreter
moves down to the next space to find the value of the integer I. Finding that value, 32 it is now able to
print it out.

This is a crude process. Many ways exist to speed up it up (binary searches, etc.), but the important thing
to remember is that there is a lot of meta-data (that it is a float, that its name is A), deeply embedded in the
data itself. In an interpreted language program, this meta-data must exist, unlike the symbol tables of a
compiled language program which can be stripped away. In our example, the meta-data about the actual
numbers 3 and 4 utilizes more memory than the numbers themselves.

The SDS Document - 1 2 - SDS Release 1.0

SDS’ MEMORY ALLOCATION TECHNIQUES/SYSTEMS
In SDS, the meta-data that exists in a compiled language only during the compilation period remains as
information directly associated with the data. Unlike in an interpreted language, however, no descriptive
information is embedded in the actual data. And unlike in a database management system (which must also
contain this meta-data), the full description may be moved with small data sets.

SDS formalizes memory allocation so that the programmer doesn’t have to remember how much memory
has been allocated. In order to keep track of memory allocated, part of the structure of the SDS header
describes the size information of all of its data objects. The SDS description also contains the original
memory allocation requests; it enables the programmer to wait until run-time to allocate memory, and the
SDS description can be written either at compile time or at run-time.

One philosophy behind SDS is the belief that all the techniques for memory allocation are fine, but that
they have their limitations. It is very useful to have naming, structure, size and location information (not
just in symbol tables, but up front, as in an interpreted language). However, the programmer can do
without extraneous information being presented every time she looks at her data.18

SDS attempts to use the best facets of the memory allocation techniques of interpreted and compiled
languages in the right order (keeping the speed of C and the informative power of the interpreted language,
but not in a way that slows down C) and then attempts to make it possible to move these pieces of
allocated memory from process to process and across networks.

DATA TRANSFER BETWEEN PROCESSORS - LIFE BEFORE SDS
Sharing information between processors and between computer languages is a general problem in the
computer world. Different computer systems provide various models for memory allocation. Interpreted
languages embed data structuring information in their data, information that cannot easily be read by
compiled languages. Some data structures are more sophisticated and complex than others. One of the
major problems is that every computer stores its data structures differently.

Data Structures
There is a short list of basic types of data structures (integers, floats, doubles, char strings, etc.). In
FORTRAN and in most BASIC type languages, all data structures must fall within those parameters. In
more sophisticated languages, (C, C++ etc.), those structures can be more complex.

int value [256];
int min_value;
int max_value;

This sample code outlines an array of 256 integers and a minimum and maximum value associated by the
naming but not explicitly related to the array. A better way to associate these values would be to define a
data structure:

struct val;
{
 int value [256];
 int min_value;

 1 8Accessing this information about the data can slow the program down. When this
information is not needed, the data can be accessed rapidly. Reminder: in SDS, the data
remain in two parts: the basic data objects, and the data structure description. This two part
division assures that if data searching is needed it can be done as efficiently as by any
interpreted language, and at times if and when data searching is not needed, data access is
optimized for use by compiled languages.

The SDS Document - 1 3 - SDS Release 1.0

 int max_value;
}

This structure defines a new kind of object, called val, composed of an array of 256 integers, another
integer called the minimum, and another integer called the maximum. These values are inextricably,
explicitly mingled, not just by the naming as in the example before, but by the data structure itself. Once
the generic structure exists, the programmer can request one and can define its val min and val max,
determine the contents of the value array, etc.

Varying Data Structure Storages in Compiled Languages19

When data is transferred between compiled languages, the data structuring information is stripped after
compilation and the data is transferred in binary form. These binary numbers can be interpreted in any
way. The computer has no way to know how the data was formatted on the computer it was created on,
and therefore has no way to differentiate pad bytes from significant bytes.

1 9The problem with varying data structures is not limited to compilers; data created with an
interpreted language on one machine, when given to the same interpreted language on
another machine, will not necessarily be understandable.

The SDS Document - 1 4 - SDS Release 1.0

The graphic below illustrates some varying data structure storages for the following data structure:

struct fred
{
 int a;
 char b;
 double c;
}

a b pad c

SUN-4

 a

 a

 a b

 b

 b

 pad

 pad

 c

 c

 c

HP 68K

V a x

A t a r i

bytes reversed

Floating point format
differs from all
otherstwo byte integer

Dealing with Data Transfer - External Data Representation
Data transfer between processors is not a new problem in the computer world and various ways have been
invented to deal with it. One example: a division of Sun MicroSystems promotes a technique called
“External Data Representation.” When transferring information between two unknown computers, it
automatically translates data into a specific format as it is being put onto the link. Any computer receiving
the information will know, for example, that there are no pad bytes in the data, etc.

This techniques works. Its major drawback is that each process automatically translates its data into this
format even if they are going to the same type of processor (an extraneous third step), and the data
structure must be already known by both ends of the system; no meta-data exists with the data itself.

THE SDS APPROACH TO DATA TRANSFER
SDS has been designed with the belief that a data flow facilitation system should manage data as it has
been written and not put structure or memory constraints on the programmer. SDS allows the programmer
to determine what data structure model she wants to use for the data. The SDS header then simply
describes that model.

SDS puts data onto the network in the format it has been programmed in but, unlike with the “External
Data Representation” technique, provides enough information about the structures, sizing, memory

The SDS Document - 1 5 - SDS Release 1.0

allocation, etc. so that any computer can translate the data into a readable format. By presenting the data in
its own format, SDS avoids the problem of unnecessary translation.

In t e rp re t ed
Basic

FORTRAN C C++

SDS enables
movement

SDS enables
movement

SDS enables
movement

SDS places a layer on top of the data that defines the structure for use by all systems and languages. It allows data from more
sophisticated structures to move into less sophisticated structures by providing a bridge over which the structure can travel.
Data cannot be directly transferred between Basic and FORTRAN. Data can be transferred from FORTRAN to C, but it can
be difficult to transfer data from C to FORTRAN20. Data can be transferred from C to C++ but because of differing data
structure, transfer from C++ to C is difficult. SDS enables data transfer in any direction but cannot alter the conceptual
structure of a language - data transfer of complex data structures to less sophisticated is difficult even with the SDS
description.

SDS presents a lump of binary data which can be mapped efficiently, while allowing the data structuring
information to remain accessible to the programmers by placing it outside the data. Any piece of published
or transferred data keeps the descriptive information with it. Programmers seeking access to the data are
presented with mechanisms which inform them what is inside the block of data.

For our data structure example,

struct val;
{
 int value [256];
 int min_value;
 int max_value;
}

the SDS description would explicitly state that this structure has an array of 256 integers followed by an
integer called the min_value, followed by an integer called the max_value. It would specify that its name
is val and that this data came from a computer with, for instance, a “R.I.S.C.” padding strategy. By
having all this information, a computer with, for instance, a “Motorola 68000” or a “Vax” padding strategy
can understand how to translate the data to a format it can understand.

TRANSFER WITHIN A SYSTEM
SDS also aids data transfer between programs within a computer, using names and internalized pointers to
sort many of the data coherency problems of shared memory that exist in compiled languages. The
following discussion will review memory allocation techniques within process and shared memory in
order to clarify how SDS operates in this area.

ALLOCATION WITHIN PROCESS AND SHARED MEMORY

20To transfer a repetitive structure from C to FORTRAN without SDS, FORTRAN must allocate
the memory. Typically in this form of data transfer, the data will have to be copied.

The SDS Document - 1 6 - SDS Release 1.0

Within a computer’s process memory, a program with all its instructions and data are stored in a piece of
memory. Should the program need more memory, it can ask the computer to allocate more space. This
additional allocation happens in one of three ways depending of the type of computer being used:

In computers which don’t use a memory manager (real time systems, Apple II,21 etc.), the RAM is
directly accessed. As a result, the memory is not protected and any process can affect it.

In computers with a memory manager, the program requests memory from the memory manager. When
the memory manager accesses the memory, it gives the program a pointer to that memory. That pointer
may be an indirection; it may not map directly to the actual memory location but, because the memory
manager is policing the memory access, the actual location of the memory is irrelevant to the program.
Use of the memory manager also insures that the memory allocated will be reserved for the program and
isolates the program so that any wrongful memory access will not affect any of the other programs.

In computers using a virtual memory system as well as a memory manager, the program is fooled into
thinking that the computer has more memory capacity than it really does. The virtual memory system does
this by swapping bytes from RAM to disk space to RAM as is needed. In this way, an 8 megabyte RAM
system will seem to the program as though it has 100 megabytes. Virtual memory systems work because
most programs’ data access tends to be localized.

Sharing Data Originating in Process Memory
Process memory provides fast data access but doesn’t provide the ability to share data with other programs
within the computer. Sometimes more than one program within a computer wants to share the same data.
This can be done by filing the data generated in process memory on disk and allowing the programs
interested in that data to make a copy of it for their own process memory. However, this can be wasteful
and time consuming, many copies of the same information can use up valuable space, and there may be
problems with data coherency; if one of the programs updates the data, it must inform all the other
programs that have copies (via the disk) how the data has changed.

Shared Memory
Shared memory allows data access to more than one program within a computer. Technologically, it is
immensely more effective than process memory when more than one program is using the data. Accessing
the live memory is much faster than accessing files and, because there is only one copy of the information,
the “dance” of loading from file, copying, altering, returning to file, etc. does not slow things down and
data coherency problems can be more efficiently handled. (Of course, using shared memory is also more
dangerous than using process memory; as there is only one copy of the data, mistakes are more difficult to
remedy and there may be problems with access control22).

How Shared Memory Functions
In the Unix system, the interprocess communications suite (ipcs) handles shared memory. When a
program needs a piece of shared memory, it requests a particular size of it. If it wants to increase the size,
the computer allocates more memory but (as in realloc()) the new piece of memory is not necessarily
attached to the old piece of memory. The new memory may exist in a different location.

Thus, if two programs are connected to a lump of shared memory, one generating data and one reading it,
and the program generating data realizes it needs more space, ipcs may allocate that space in a different

2 1 In real-time systems, direct memory access provides the advantage of speed; there is no
memory manager in the way. The Apple II has no memory manager because it is a simpler
m a c h i n e .
22The memory manager has some control of access, and there are ways to put blocks on
data, but there are always control flow problems and a piece of data might be accessed by a
process before the generating process has finished its input.

The SDS Document - 1 7 - SDS Release 1.0

place in shared memory. The generating program will continue to write into it. However, the program
reading the shared memory data will still be attached to the piece of memory containing the old data and it
will stay there until it is instructed to release it and and the connection is broken. Only once it has been
instructed to do so can a new connection can be made to the new piece of shared memory. In order to
avoid this situation, a program-to-program control message structure is needed.23

SDS AND SHARED MEMORY
Because of the intrusion of the memory manager, different systems cannot use the same addresses
(absolute pointers) to access data in shared memory. If one program writes a pointer into a data object,
that pointer will not point to the same piece of data in another program. In shared memory, the normal
practice of leaving pointers to objects is extremely dangerous.24

SDS sorts out many of the shared memory data coherency problems of compiled languages that exist
because of the fact that absolute pointers can’t move between programs. SDS allows data objects to be
addressed within shared memory either by name or by guaranteed internalized pointers. (Internalized
pointers are pointers that do not point directly to a data address, they are set offset to the data, usually
relative to the beginning of the data.) For each program, the SDS code will give the correct pointer to the
offset position.

WARNING FOR SDS USERS: When moving SDS datasets from from process memory to shared
memory, please be VERY CAREFUL! A common error is to continue to use process memory even
AFTER the data has been copied into shared memory.

DATA DESCRIPTION
SDS serves not only as “glue” between the bits and bytes of various systems, languages, and applications,
but also operates on a higher level of data description. One of the important SDS data description features
is the SDSListk, a type of list.

LISTS AND ARRAYS
A list is a very general organizational data structure, a way of associating data objects. When data objects
are associated in a list, they can be easily searched for, reorganized, etc.25 While many of the things done
with lists can also be done using arrays, it is far easier to organize data objects with a list. (Arrays, in fact,
are actually a simple type of lists; automatically built in to many computer languages.) While lists require
the additional effort of extra code, they are ultimately far more flexible than arrays.

List code associates things in a linear or a multi-dimensional structure. The items in the list exist in
memory connected only by list pointers that go from item to item. To add a new name to the list, all that
must be done is is to change the pointers, to break and reset the linkages. No duplication of data items is
needed and, in the SDS system (SDSListks, the SDS list), there is no manual memory reallocation.26 A
list may be multiply linked and data items can be associated in more than one list at a time. General rules
may be specified for all items on the list.

2 3 ipcs handles the basic tools for this (message passing and semaphores).
24 ...and extremely funny, says Chris.
25A common example of list usage: in many compiled language systems, the computer
doesn’t have any up-front information about the size and memory allocation of its data
objects. In order to find how much data are stored, the user must keep requesting data until
there is no more. This can be dealt with by producing a list; a directory structure, where
pointers are kept to each new piece of data.
2 6There are times when memory must be reallocated because the programmer doesn’t know
how many of a given type of data object she will need.

The SDS Document - 1 8 - SDS Release 1.0

An array, in contrast, is a linear association existing in contiguous space in memory. To add an item to a
linear array, a new space in the array must be created and the items already in the array must be shifted in
order to insert the new item. In order to associate an item in more than one array at a time, it must be
duplicated.

LISTS IN THE C++ IMPLEMENTATION - THE SDSLISTK
Lists are a highly effective organizational tool until the programmer wishes to pass the list outside the
program. Because List code relies heavily on pointers, the code becomes unavailable.

The basic ISTK list class is a Listk. SDSListks add persistency to Listks. Whereas basic Listk code
requests a pointer to a data object, SDSListk code requires more information about the data object so that it
can be identified both internally and externally, allowing lists to be transferred, saved, examined and
manipulated by different processes, wherever they might be.

SDSListks list Data Frags: the data being associated by the SDSListk27. Around the Data Frags are the
ListkItems, objects which serve as descriptive wrappers.28

ListkItem

Data
Frag

ListkItem

Data
Frag

ListkItem

Data
Frag

Normandie
ListkItem

Data
Frag

TomasAntigone J e r r y

An Alphanumeric List

A ListkItem contains a primary and secondary pointer, the name of the Data Frag, and its identification
number. The primary pointer in a ListkItem points to the actual code which gives access to the Data Frag.
This code cannot be saved, only a summary of it (the descriptive name)can be saved.29 The secondary
pointer points to data which defines how the code object (Data Frag) will be used. This data can be saved
and, once reconstituted from file or memory, these encapsulated data “specs” can be used in a variety of
ways.30

Data Frags in an SDSListk can be accessed by the name, ID number, or primary pointer. They can be run
through (like an array); the user can delete or move them. Users don’t create ListkItems directly; they are
built when new user pieces are added, inserted, etc, to the list. The ListkItems supervise the Data Frags,
make the list connections, and allow Data Frags to be added and deleted.

27Like most list code, Listks cope with pointers to objects, not with the objects themselves.
Listks do not allocate memory for Data Frags (data objects) that they list (they can’t, they
don’t know what the Data Frags are). Also, they don’t allocate memory for names UNLESS
and UNTIL the user explicitly asks for a name heap to be created (in preparation for the
SDSListk).
2 8 In an array, ListkItems are not necessary, they are contained in a rule that the Data Frags
will be placed in contiguous spaces in memory.
29 If this were a complete Smalltalk environment, the code would be saved as well.
30For instance, the user may want a textual description of a picture. She would use the data
provided in the secondary pointer and create a different, textual object instead of the
original visual object created and described by the original primary pointer.

The SDS Document - 1 9 - SDS Release 1.0

ListkItem

Data
Frag

Normandie
ListkItem

Data
Frag

Tomas
ListkItem

Data
Frag

Antigone
ListkItem

Data
Frag

J e r r y

ListkItem

Data
Frag

Laurie

Adding an Item to An Alphanumeric List
To add a new Data Frag to an SDSListk, the user presents the new Data Frag and requests that it be added to the list.

Persistent SDSListks
SDSListks are persistent, eliminating the problem of transferring pointers from one running program to
another. To save an SDSListk for later use, or use by another program, the information referred to by the
secondary pointer is collapsed and two new objects are created. The first item is a concatanated array of
driving data about the Data Frags. The driving data can include such things as definitions of coordinates,
colors, backgrounds, etc. The second object contains an array of the ID numbers, the name heaps, and the
pointers; information about how the Data Frags were used. When these two objects are stored and
brought back, all the necessary information is there to reconstitute the SDSListk. The only thing that
cannot be done is to store the actual code.

GRAPHIC - SID Picture

HIGHER ORDER NAMING CONVENTIONS
There are additional conventions that can be used to augment the low-level SDS headers. An example of
higher naming conventions follows:

When transferring data from an SDS to an SQL database, the SQL command select * from table will
result in a database output that can be mapped directly into a single level C-structure and then loaded into
an SDS dataset with all of its meta-data (row names types, etc.) intact. The command select * from
table where table.value >42, will result in a subset of the data of the previous command (although the
data structure is identical). The low-level SDS header has no way to contain the extra meta-data (the fact
that the database output is a subset of the table and not the whole thing). Obviously, this can be
problematic.

The SDS tool db2sds adds another layer of information, a simple higher naming convention, to the meta-
data existent in the SDS header. If and when the “where” clause is present, an additional string data object
will appear in the dataset named table.where. For the example above, the additional objects value would
read “value > 42”. This extra data could subsequently be used, for instance, to label a graph of “table” or
to act as the qualifier when sds2db (the reverse operation, transferring data from an SDS to an SQL
database) attempts to update the original table in the database.

SDS COMMUNICATION - COMMUNISTKS AND GLISH
The Integrated Scientific Tool Kit (of which SDS is a major component) has two high-order
communication features, Communistks and GLISH, which SDS uses to access data objects and handle the
control flow between programs/systems.

The SDS Document - 2 0 - SDS Release 1.0

Communistks are the communication class for the ISTK libraries. A Communistk is a data object which
focuses on a value and has a list of other data objects to notify when this value, or the Focus itself,
changes. Communistks exist only in the object-oriented languages. They enable, and hopefully simplify,
communication between objects in a program and, by using the GLISH connection, between different
programs within a processor and between programs running on physically distinct processors.

For a successful communication set-up between data objects, several things are required: one or more
senders, one or more receivers, and a message body. Communistks are built to take over the mechanics of
communication checks and routing for a set of communication types. To this end, they take over
responsibility for the message body: the Focus.

The Focus of a Communistk
The Focus of a Communistk is essentially a memory location into which a value is written. The
Communistk is responsible for policing what happens to that Focus and for routing advice of any
changes31 to the Focus’ value to data objects which have expressed an interest in the Focus. The interested
data objects don’t know or care which or how many data objects may change the Focus. They are only
interested in knowing if it has been changed.32 The data object which changes the value of the Focus does
not notify any other data objects of its action; it is the data objects who wish notification which ask the
Communistk to inform them of any changes to the Focus.

Communistk Constraints
The Communistk creator, when creating space for the Communistk’s Focus, can assure that attempts to
write in a value of an incorrect value type will be blocked. Additional constraints on that value (hard
minimum and maximum values, warning and alarm values, restrictions on single-hit changes, etc.), may
be placed using the Communistk Constrainer class. These constraints are associated with the Focus itself,
not with the data object that is inputting the value change. Any attempt to change the value of the Focus are
properly checked33 and illegal actions will be thrown out by the Communistk.

Change of Focus
In addition to the change in a Focus’ value, the Focus itself may move from one data object to another.
An analogy for this might be the “daily specials” list at the local restaurant. Joanne’s Restaurant has a list
of dishes served only on Mondays (roast beef with potatoes, vegetarian casserole, shrimp salad), a list of
dishes served only on Tuesdays (Chef’s Salad, Sloppy Joe with boiled carrots, calves liver saute), etc.
These lists remain the same; every Monday the specials are the same as every other Monday. Joanne is
lazy, she doesn’t like to rewrite the Specials Board every day, so she has seven boards in the closet, each
one listing the specials for one day of the week.

Joanne’s Special’s Boards are analogous to the Foci. Foci value (like the daily lists) remain the same, but
a change in the Focus resets which value is being looked at (Monday’s, Tuesday’s or Wednesday’s

31The message body may possibly be null; the arrival of a message may be a signal in itself.
The first release of Communistks notified everybody whenever ANY change happened to
the Focus. Release 1.1 allows more restricted changes to be notified, such as passing
warning limits. This code is not fully tested.
3 2 An object may, of course, be both a changer of the Focus and be interested if anything
else has changed it. In that case, though the data object that changes the Focus is already
on the list, the Communistk can be instructed not to notify it. Also, when a number of
changes are to be made before response by other objects is required, the Communistk can
be set to change the Focus value without notifying the data objects on its CommuList.
33By the SetValue () method. The data object that is inputting the value change does not
change the value of the Communistk’s Focus directly.

The SDS Document - 2 1 - SDS Release 1.0

Board). There are a number of methods which do no changing of Focus value but simply declare to all
interested parties that the data Focus has shifted.

GLISH
Communistks only work within a process. GLISH, the ISTK component responsible for sequencing and
control flow, facilitates communication between different processes and computers, carrying messages
from one process to another via the GLISH executive.34 For the programmer, the only difference between
internal and external messages is that Communistks which will communicate outside their process must be
named. For external communication, this Communistk name becomes the GLISH event name.

CREDITS AND REFERENCES
The Integrated Scientific Tool Kit (ISTK) was developed directly out of the problems associated with
running particle accelerators. Development began in the early 1980’s by Christopher Saltmarsh at the
CERN Super Proton Synchotron in Geneva. SDS, developed by Saltmarsh, was used at the E778
FermiLab in which non-linearities were added to the Tevetron magnetic field to simulate potential S.S.C.
control problems. Other ISTK components used at this experiment were GLISH, a sequencing language
rewritten to its present implementation by Vern Paxson at the Superconducting Super Collider Central
Design Group, and GLISTK, the ISTK graphic library, developed primarily by Matthew Kane. SDS (and
the other ISTK components) are under continuing development and are currently being used at various
sites internationally. Continuing ISTK development includes work by Matthew Fryer and documentation
by Ericka Lutz, and contributions from user groups such as the S.S.C. Magnet Test Division. The current
list of ISTK collaborators (see the mail exploder on largo.lbl.gov) includes people from: the
Superconducting Super Collider Accelerator System and Magnet Divisions; Lawrence Berkeley
Laboratory; FermiLab; Cornell University; Lawrence Livermore Laboratory; Texas University; and the
Texas Accelerator Center.

ISTK Information and Documentation
Computer files available via anonymous ftp from largo.lbl.gov

Document lists (including SDS and GLOSS man pages) available on largo.lbl.gov in file:
/usr/local/src/ISTK/Doc/index (from anonymous ftp these will appear on pub/ISTK).

Paxson, Vern. The Reference Manual for the GLISH Sequencing Language. (vern@ee.lbl.gov)

Lutz, Ericka, and Matthew Kane. The Glistk Manual . March, 1991

Lutz, Ericka.The Integrated Scientific Tool Kit: An Overview of the ISTK System and its Components. Superconducting
Super Collider publication S.S.C.-MAN-0017. July, 1991

Email to:
istk-counsel@psychosis.ssc.gov
istk-gripe@psychosis.ssc.gov

Suggested Reading and References -
Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language. Englewood Cliffs, N.J.: Prentice-Hall, 1978

Cox, Brad J. and Andrew Novobiliski. Object-Oriented Programming : an evolutionary approach, 2nd Ed. Reading, Mass.:
Addison-Wesley, 1991

Wilson, Stephen. Using Computers to Create Art. Englewood Cliffs, N.J.: Prentice-Hall, 1986

34As with Communistks, the sender is not aware of where that message may go - it is the job
of the external communication router (the GLISH executive) to do this and to cope with
except ions .

The SDS Document - 2 2 - SDS Release 1.0

